Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Taiwan ergonomic pillow OEM factory supplier
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam graphene material ODM solution
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Custom foam pillow OEM in Taiwan
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM pillow factory in Indonesia
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.PU insole OEM production in China
A study reveals that climate change is drastically affecting the habitats of 12 highly migratory fish species, including sharks, tuna, and billfish, in the Northwest Atlantic Ocean and Gulf of Mexico. By 2100, these species could lose up to 70% of their suitable habitat due to rising ocean temperatures. Climate change is causing significant habitat loss for key marine species like sharks and tunas in crucial oceanic regions, with some species potentially losing up to 70% of their habitats by 2100. A study of 12 species of highly migratory fish predators—including sharks, tuna, and billfish such as marlin and swordfish—finds that most of them will encounter widespread losses of suitable habitat and redistribution from current habitats in the Northwest Atlantic Ocean (NWA) and the Gulf of Mexico (GOM) by 2100. These areas are among the fastest-warming ocean regions and are projected to increase between 1-6°C (+1-10°F) by the end of the century, a sign of climate-driven changes in marine ecosystems. Current and Future Challenges for Marine Species In some cases, these iconic, and economically and ecologically important species, could lose upwards of 70% of suitable habitat by the end of the century, and in most cases, the impacts of these climate-induced changes are already observable. “The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems,” according to the study, “Widespread habitat loss and redistribution of marine top predators in a changing ocean,” published in the journal Science Advances. A study from Woods Hole Oceanographic Institution, San Diego State University, and NOAA Fisheries, shows that some species of highly migratory fish predators – including sharks, tuna, and billfish, could lose upwards of 70% of suitable habitat by the end of the century, which is when climate-driven changes in the ocean are projected to increase between 1-6°C (+1-10°F) in sea surface temperatures. The study identified the Northwest Atlantic Ocean and the Gulf of Mexico, which are among the fastest-warming ocean regions, as predicted hotspots of multi-species habitat loss. Credit: Blue Shark, ©Tom Burns Research Methodology and Findings The study, led by Camrin Braun, an assistant scientist and marine ecologist at the Woods Hole Oceanographic Institution (WHOI), identified areas offshore of the Southeast U.S. and Mid-Atlantic coasts as predicted hotspots of multi-species habitat loss. The researchers studied the impacts on three shark (blue, porbeagle, and shortfin mako), five tuna (albacore, bigeye, bluefin, skipjack, and yellowfin), and four billfish (sailfish, blue marlin, white marlin, and swordfish) species. Although the researchers’ model framework could not account for potential adaptability or thermal tolerance by species, the results “suggest predominant and widespread habitat loss for nearly all [highly migratory species] studied.” “Climate change is expected to fundamentally change the status quo for where these species are and how they live. While we don’t really understand all the details of what that fundamental change might look like, this study is a good step in the direction of trying to nail down what those changes might be, so that we can do something about it,” said Braun. Scientists used three decades of satellite, oceanographic model, and in situ biological data to develop dynamic species distribution models to assess how climate change has already and will continue to impact the fish species in the NWA and GOM. NOAA CoastWatch visualization of NOAA satellite data for global sea surface temperatures from January 2023 through July 2023. Credit: NOAA Satellites Implications for Marine Management and Conservation “Our research demonstrates that climate-driven changes are happening now, not from projections of climate change, but based on observed empirical data from the last two decades. So while our findings do point to larger species shifts in the near term, it also clarifies the substantial changes in species distributions that have already occurred,” said study co-author Rebecca Lewison. She is professor of biology and a conservation ecologist at the Coastal and Marine Institute at San Diego State University. She added that the research results “highlight the importance of using NASA and other satellite data to understand how a changing ocean is impacting commercially important marine species like swordfish and tunas.” The study “not only sheds more light on the far-reaching effects of climate change on ocean environments but highlights that marine conservation and management efforts need to plan for these ongoing changes. If migratory fish are on the move, fishing vessels and coastal communities will also need to adapt. Studies like this will help marine resource agencies be even more dynamic in their decision-making,” said study co-author Tobey Curtis, a fishery management specialist in the Atlantic Highly Migratory Species Management Division of NOAA Fisheries. Socioeconomic Impacts and Management Strategies The shifts in the habitat and distributions of these species “raise concerns for associated fisheries and the socioeconomic impacts of climate change on fishing communities,” according to the article. The concentrated changes in species distribution also “highlight the need for adaptive management approaches that can respond to expected changes.” “Our results suggest static fishery management measures will continue to lose ecological relevance and economic efficacy as species redistribute under climate change.” Braun said the motivation for the research is not only to better understand the fish and marine ecosystems, but also to understand how changes affect people, their livelihoods, coastal communities, and commercial fisheries. “We are doing our best to try to figure out what will happen, so that people can adapt and so that we can develop climate-resilient or climate-ready management policies,” Braun said. He said that historic ways to manage fisheries are static, even though fish move around a lot. “We basically draw a box in the ocean and say whether you can or can’t fish there,” he said. Dynamic ocean management frameworks “must embody expected changes. Otherwise, you are left with your static box in the ocean that doesn’t move, even though the fish may have moved, and the ocean may have changed.” Key Takeaways: A study of 12 species of highly migratory fish predators—including sharks, tuna, and billfish such as marlin and swordfish—finds that most of them will encounter widespread losses of suitable habitat and redistribution from current habitats by 2100. That is when ocean surface temperatures are projected to increase between 1-6°C (+1-10°F), a sign of climate-driven changes in marine ecosystems. In some cases, these iconic and economically- and ecologically important species could lose upwards of 70% of suitable habitat by the end of the century. In most cases, the impacts of climate change on habitat already are observable. In most cases, the impacts of climate change on habitat already are observable. “The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems,” according to the study. “Our results suggest static fishery management measures will continue to lose ecological relevance and economic efficacy as species redistribute under climate change.” The study identified the Northwest Atlantic Ocean and the Gulf of Mexico, which are among the fastest warming ocean regions, as predicted hotspots of multi-species habitat loss. The motivation for the research is not only to better understand the fish and marine ecosystems, but also to understand how changes affect people, their livelihoods, coastal communities, and commercial fisheries, said journal article lead author Camrin Braun. “We are doing our best to try to figure out what will happen, so that people can adapt and so that we can develop climate-resilient or climate-ready management policies.” “Climate change is expected to cause the status quo for where these species are and how they live to fundamentally change. While we don’t really understand all the details of what that fundamental change might look like, this study is a good step in the direction of trying to nail down what those changes might be, so that we can do something about it,” said journal article lead author Camrin Braun Reference: “Widespread habitat loss and redistribution of marine top predators in a changing ocean” by Camrin D. Braun, Nerea Lezama-Ochoa, Nima Farchadi, Martin C. Arostegui, Michael Alexander, Andrew Allyn, Steven J. Bograd, Stephanie Brodie, Daniel P. Crear, Tobey H. Curtis, Elliott L. Hazen, Alex Kerney, Katherine E. Mills, Dylan Pugh, James D. Scott, Heather Welch, Riley Young-Morse and Rebecca L. Lewison, 9 August 2023, Science Advances. DOI: 10.1126/sciadv.adi2718 Funding for this research was provided by a NASA Ecological Conservation program grant, the NOAA Integrated Ecosystem Assessment Program, the Postdoctoral Scholar Program at WHOI, and the Dr. George D. Grice Postdoctoral Scholarship Fund at WHOI.
The fusion of high-performance computing and biophysical research is paving the way for revolutionary discoveries in biology, with next-generation supercomputers and AI tools playing pivotal roles. The dynamic interplay where high-performance computing converges with biophysical exploration is pushing the frontiers of knowledge and catalyzing a new era of unprecedented discoveries in biology. New light has been shed on the transformative capabilities of the next generation of supercomputers in reshaping the landscape of biophysics in a recently published article featured on the cover of the Biophysical Journal. It was authored by Dr. Rafael Bernardi, assistant professor of biophysics at the Department of Physics at Auburn University, and Dr. Marcelo Melo, a postdoctoral researcher in Dr. Bernardi’s group. Bridging Computation and Experimentation The researchers at Auburn delve into the harmonious fusion of computational modeling and experimental biophysics, providing a perspective for a future in which discoveries are made with unparalleled precision. Rather than being mere observers, today’s biophysicists, with the aid of advanced high-performance computing (HPC), are now trailblazers who can challenge longstanding biological assumptions, illuminate intricate details, and even create new proteins or design novel molecular circuits. Illustration of a protein placed over a computer chip. New, powerful computers are helping scientists design and understand proteins like never before. Credit: Rafael C. Bernardi One of the most important aspects discussed in their perspective article is the new ability of computational biophysicists to simulate complex biological processes that range from subatomic processes to whole-cell models, with extraordinary detail. As Dr. Bernardi articulates, “The new exascale computers allow computational biophysicists to go beyond what can done experimentally and simulate biological processes with a much higher level of detail. For instance, we can now understand how pathogenic bacteria bind to humans during infection at an atomistic level, generating data for AI models and opening new roads of exploration.” The Pivotal Role of Advanced Technology Historically, disciplines like physics and chemistry have relied heavily on theoretical models to guide experiments. Today, biology stands at a similar crossroads, with novel software and specialized hardware becoming pivotal in deciphering experimental data and proposing innovative models. The inaugural public exascale supercomputer, Frontier, which was deployed by the Oak Ridge National Laboratory in late 2021, coupled with the rapid proliferation of artificial intelligence tools tailored for biophysics, exemplifies the profound strides being made to seamlessly bridge simulation with actual observation. The momentum gained by computational biophysics signifies a transformative shift in the scientific landscape. As biophysical research progresses, the seamless integration of experimental and computational efforts is expected to redefine the frontiers of knowledge, laying the groundwork for unprecedented discoveries that could reshape our understanding of the biological world. Reference: “Fostering discoveries in the era of exascale computing: How the next generation of supercomputers empowers computational and experimental biophysics alike” by Marcelo C.R. Melo and Rafael C. Bernardi, 2 February 2023, Biophysical Journal. DOI: 10.1016/j.bpj.2023.01.042
Researchers have discovered, described, and named 12 new weevil species in Japan, Malaysia, Vietnam, and Taiwan. Aphanerostethus magnus and Aphanerostethus japonicus are found in Japan, with the latter also found in Yanbaru National Park, Okinawa. Credit: Lewis et al., 2024 Twelve new weevil species were discovered by Jake Lewis’s team at OIST, employing both innovative and classical taxonomy methods. Weevils are an exceptionally diverse group of beetles that includes many species with elephant trunk-like mouthparts, known as a rostrum. They provide numerous ecosystem services such as pollination and decomposition, although some species are notorious pests that can decimate crop fields and timber forests. Advancements in Weevil Classification In a new study published in Zookeys, a research team digitally removed the scales that cover the cuticle of the weevils using X-ray microtomography, a 3D imaging technique that uses X-rays to visualize cross sections of the internal structure of objects. The team, led by Jake Lewis, an entomologist in the Environmental Science and Informatics Section at the Okinawa Institute of Science and Technology (OIST), discovered that the underlying cuticle differs significantly between species and can therefore be used for taxonomic and classification purposes. X-ray microtomography generated 3D models of weevil species from the genus Aphanerostethus with the right elytron (forewing) removed, revealing differences in the length, width, and pattern of veins in the hindwing. A lateral view of the full body is shown below each closeup for reference. The red, blue, and yellow arrows indicate the base, midpoint, and apex of the hindwing, respectively. A: Aphanerostethus bifidus; B: A. decoratus; C: A. japonicus; D: A. magnus. Credit: Lewis et al., 2024 Using this innovative technique in combination with traditional light microscopy and DNA barcoding, they discovered, described, and named 12 new weevil species from Japan, Malaysia, Vietnam, and Taiwan. These species range from 1.5 to 3.0 mm in length and are comparatively small weevils. New Weevil Species Discovered Two of these new species are present in Japan: Aphanerostethus magnus (Oo-daruma-kuchikakushi-zoumushi) and Aphanerostethus japonicus (Nippon-daruma-kuchikakushi-zoumushi). One of these, Aphanerostethus japonicus, is also found in Yanbaru National Park, Okinawa. This is the first time x-ray microtomography has been used to remove obscuring scales to examine underlying differences in morphology for taxonomic purposes. The findings from this study have been published in the journal Zookeys. The researchers showed that removing scales using X-ray microtomography reveals significant morphological differences between species, which cannot be easily observed using other methods. Consequently, this technique may gain more popularity as a tool for identifying new insect species, especially those covered in scales or debris. OIST entomologist and Insect Collection Manager, Jake Lewis, searches for weevils on Okinawa Island, Japan. He and his collaborators collected weevils from Japan, Taiwan, Vietnam, and Malaysia, and discovered 12 new species. Credit: Merle Naidoo, OIST Lewis, OIST’s Insect Collection Manager and lead author of the paper, examined specimens from collections in Canada, Germany, Japan, Malaysia, Taiwan, and the Netherlands. One of the primary goals was to investigate the use of X-ray microtomography as a tool in weevil taxonomy. The genus Aphanerostethus was poorly studied in the past, but many undescribed species were discovered in museum collections around the world, including the two new species from Japan. Multiple Methods To Find New Species The researchers used traditional methods such as light microscopy and dissections to observe differences between species, including the scales along the elytra (back), leg spines, and the shape of the rostral canal (a canal that protects the rostrum). They also used DNA barcoding to analyze their genes and create a phylogenetic tree of eight of the species. Some species were not as easy to separate based on morphology alone, but as the gene sequences differ between species, the phylogenetic tree was informative and provided additional evidence of new species. Although the above methods are standard practice in taxonomy, the researchers’ use of X-ray microtomography was novel and was successfully used to examine the structure of not only the hidden cuticle but also the hindwings. Aphanerostethus weevils have lost the ability to fly due to the gradual reduction of their hindwings, however, the degree of reduction was shown to differ between species. Normally, specimens would have to be dissected to view the hindwings, but because x-ray microtomography allows for non-destructive examination of internal anatomy, it is invaluable when working with rare or precious specimens that cannot be dissected or altered. Phylogenetic tree of eight Aphanerostethus species constructed by comparing genetic information to see how closely related different species are. This helped Lewis and his team verify their predictions about species classification by using DNA analysis instead of only physical traits. The colored, vertical bars represent different species and includes the two new species from Japan. Credit: Lewis et al., 2024 The presence of partially reduced wings in some species offers a fascinating glimpse into the ongoing process of evolutionary change: “Some species have almost completely lost their hindwings, while others still have non-functional half-wings with remaining vein patterns. The differing degrees in hindwing loss is not only useful for taxonomy and systematics, but also shows how different species within the same group can be at different stages of losing a historically highly important organ that played a crucial role in insect evolution,” Lewis explained. Investing in Japan’s Natural Heritage The discovery of new weevil species can be challenging for two main reasons. Firstly, weevils are incredibly diverse, making complete cataloging time-consuming and tedious. Secondly, many weevil species are highly host-specific, may only inhabit very particular microhabitats, and may only be active for a short period of time as adults. For example, some species feed on a single tree species and may only occupy a certain part of a tree, such as the canopy. Furthermore, some species of weevils are strictly nocturnal and rarely observed during the daytime. This extreme specialization and variation in natural history means that unless researchers investigate at night and day, across seasons, and focus on specific parts of many different plant species, they will inevitably overlook certain species. Using x-ray microtomography, Jake Lewis’s team at OIST identified 12 new weevil species, enhancing traditional taxonomy and contributing to understanding weevil evolution and biodiversity. Credit: Lewis et al., 2024 Dr. Dan Warren, a research fellow at the Gulbali Institute for Applied Ecology and former leader of the Environmental Science and Informatics Section, emphasized the importance of investing in specimen collections: “These specimen collections are crucial for discovering new species and documenting biodiversity changes, both from human activities and natural cycles. They are essential tools for scientific research and conservation biology,” he stated. “Without proper support for them and the people who maintain them, we risk losing irreplaceable information on species and ecosystems, potentially before we even discover them.” “These new weevil species are part of Japan’s natural heritage, and although still poorly known ecologically, discovering and naming them is the first step towards an understanding of their biology,” Lewis added. Protected areas like Yanbaru National Park, home to the newly discovered A. japonicus, are essential to the protection of the island’s rich and endemic biodiversity. Reference: “The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae)” by Jake H. Lewis, Hiroaki Kojima, Miyuki Suenaga, Dimitrios Petsopoulos, Yusuke Fujisawa, Xuan Lam Truong and Dan L. Warren, 29 October 2024, ZooKeys. DOI: 10.3897/zookeys.1217.126626
DVDV1551RTWW78V
Soft-touch pillow OEM service in Taiwan 》the smart choice for brands seeking quality and customizationThailand insole ODM service provider 》performance-first thinking from development to deliveryGraphene cushion OEM production factory in Taiwan 》experience-driven OEM/ODM for thoughtful product design