Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Thailand eco-friendly graphene material processing
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.China custom product OEM/ODM services
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan sustainable material ODM production base
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Orthopedic pillow OEM solutions Thailand
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand custom insole OEM supplier
Scientists have discovered the cold resistance mechanisms of the white water lily, revealing strategies like ecodormancy and enhanced antioxidant systems. Key metabolites play crucial roles, offering insights for developing cold-tolerant crops and supporting sustainable agriculture amid climate change. Recent research has detailed the cold resistance mechanisms of the white water lily, offering insights into potential agricultural applications for improving crop resilience against cold climates. Scientists have recently unraveled the complex mechanisms of cold resistance in the white water lily, a plant thriving in the cold environments of Xinjiang’s high-altitude regions. Detailed analysis of the lily’s physical adaptations, strategic allocation of resources, and metabolic responses has revealed a sophisticated regulatory system involving phytohormone signaling, amino acid metabolism, and circadian rhythms. This breakthrough offers crucial insights for enhancing the cold tolerance of agricultural crops. Agricultural productivity faces a chilling threat from cold stress, which can stunt plant growth and reduce yields. The white water lily, enduring the harsh winters of high-altitude habitats, presents a unique model for studying cold adaptation. With climate variability posing a risk to food security, there is an urgent need to unravel the molecular and physiological underpinnings of the lily’s resilience. This study rises to the challenge, delving into the strategies that enable the white water lily to withstand freezing conditions. The collaborative research team from Nanjing Agricultural University has achieved a significant milestone, with their findings published in the esteemed Horticulture Research journal on February 17, 2024. Employing an integrated multi-omic approach, the study provides a comprehensive dissection of the white water lily’s cold adaptation strategies, offering a treasure trove of knowledge for agricultural science. The morphology and anatomy of white water lily. Credit: Horticulture Research Mechanisms of Cold Resistance The white water lily’s cold resistance is revealed as a tapestry of survival strategies, including a state of ecodormancy that maintains cellular integrity during winter. The lily’s arsenal includes resource reallocation, morphological adaptations for osmoregulation, and enhanced antioxidant systems to counteract cold stress. A deep dive into its transcriptome, phytohormones, and metabolome has uncovered a regulatory network central to its cold acclimation, with nitrogen metabolism and specific amino acid pathways playing pivotal roles. The identification of metabolites like myo-inositol and L-proline as key players in its cold tolerance, and the intriguing underuse of unsaturated fatty acids, points to novel mechanisms of temperature regulation. Dr. Qijiang Jin, the study’s lead scientist, highlights the integration of diverse data as a cornerstone of their innovative approach. “Our research not only illuminates the white water lily’s survival tactics but also paves the way for enhancing cold resistance across plant species,” Dr. Jin asserts. The study’s findings are sown with the potential to cultivate a new era of cold-tolerant crops. By harnessing the adaptive strategies of the white water lily, the development of novel breeding techniques and the creation of stress-resilient plant varieties are on the horizon. As climate change casts a shadow over food security, these insights could be the beacon of hope for sustainable agriculture. Reference: “Multi-omic dissection of the cold resistance traits of white water lily” by Penghe Qiu, Tong Liu, Yingchun Xu, Chunxiu Ye, Ran Zhang, Yanjie Wang and Qijiang Jin, 17 February 2024, Horticulture Research. DOI: 10.1093/hr/uhae093 This research was funded by the National Natural Science Foundation of China (no. U2003113; U1803104; 31971710); China Postdoctoral Science Foundation (2505BSHJJ); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Researchers have created a stem cell-based organoid model of the placental barrier, offering a new tool for studying placental function and drug toxicity, potentially improving fetal safety in drug development. Researchers from Tokyo Medical and Dental University (TMDU) overcome scientific roadblocks and develop a model to assess the biology of the human placental barrier. During pregnancy, the human placenta plays multiple essential roles, including hormone production and nutrient/waste processing. It also serves as a barrier to protect the developing fetus from external toxic substances. However, the placental barrier can still be breached by certain drugs. In a recent article published in Nature Communications, a team led by researchers at Tokyo Medical and Dental University (TMDU) developed a trophoblast stem (TS) cell-based organoid model of the placental barrier to support further biological research. Advancements in Placental Modeling Villi in the human placenta help form the barrier and are surrounded by a layer of cells called trophoblasts. Because the structural nature of villi is critical for its function, cell lines and other methods used to replicate placental physiology in laboratory experiments have proven inadequate. Primary placental cells are also difficult to maintain in culture. Therefore, the TMDU group aimed to develop an effective in vitro model of placental villi using TS cells. In the human placenta, there are placental villi, and the surface of the villi consists of syncytiotrophoblast, also called barrier cells, that serve as the main barrier against foreign substances. However, some medicines taken by pregnant women can penetrate this placental barrier and have undesirable effects on the fetus. Credit: Department of Diagnostic and Therapeutic Systems Engineering, TMDU “TS cells have the capacity to differentiate into all kinds of placental cells consisting of the human placenta.,” says Dr. Takeshi Hori, lead author of the study. “However, it has been challenging to make the barrier model using TS cells.” Developing and Testing the Organoid Model First of all, the team then generated trophoblast organoids, a type of three-dimensional cell model that can more effectively mimic the structural and biological details of an organ. After testing three types of culture medium, they determined the optimal conditions to support the formation of spherical organoids. “The outer layer of the organoid contained a single layer of cells called syncytiotrophoblasts,” explains Dr. Hirokazu Kaji, senior author. “This layer effectively displayed the barrier function that we were aiming to mimic with this model.” Placental organoids generated from human placental stem cells (left), a front view of the placental barrier model (center), and a side view of the barrier model (right image, red-colored cells at the top of the layers indicate barrier cells). Credit: Department of Diagnostic and Therapeutic Systems Engineering, TMDU Based on the culture conditions of the spherical organoids, the researchers established flatter organoids with a column-type container to easily asses the translocation of compounds through the barrier layer. The researchers used various methods to confirm the barrier integrity and maturation levels of the plane organoids and to ensure the robustness of the system. Their analysis also showed that the model could be used to assess how well different compounds could cross the barrier, specifically by examining the permeability coefficients. Implications for Drug Development and Placental Biology “Using the organoids as a model of the placental barrier will help scientists better understand general placental biology and potential drug toxicity,” says Dr. Hori. “We also designed our model in a manner such that the cells could be easily cultured and it could be evaluated using microscopic observation.” The TS cell-based organoid model generated in this study effectively addresses many of the difficulties that have previously hampered laboratory-based assessments of placental physiology. It will be a useful tool for not only elucidating details of the development of this organ, but also for evaluating the transfer rates and toxicity levels of various compounds. This will be critical in the drug development process to avoid damaging the placenta or harming the fetus. Reference: “Trophoblast stem cell-based organoid models of the human placental barrier” by Takeshi Hori, Hiroaki Okae, Shun Shibata, Norio Kobayashi, Eri H. Kobayashi, Akira Oike, Asato Sekiya, Takahiro Arima and Hirokazu Kaji, 8 February 2024, Nature Communications. DOI: 10.1038/s41467-024-45279-y
DNA methylation is a key epigenetic process that helps regulate gene expression by adding methyl groups to DNA, ensuring that different cell types function correctly. A recent study discovered that the CDCA7 gene, previously linked to ICF syndrome, plays a critical role in accurately inheriting DNA methylation by sensing hemimethylation, a function previously thought to be exclusive to UHRF1. Credit: SciTechDaily.com DNA methylation, essential for regulating gene expression and cell function, is crucially maintained by CDCA7, which researchers found also detects hemimethylated DNA, a role previously attributed only to UHRF1. DNA methylation is a process where a methyl group is added to the cytosine base of the DNA molecule, serving as a key mechanism for epigenetic marking. Epigenetic modifications, like DNA methylation, function as on-off switches to regulate gene expression, enabling the creation of diverse cell types without altering the underlying DNA sequence. This process ensures that genes specific to one type of cell, such as those related to brain function, are not activated in other cell types, like heart cells. For this reason, maintenance of the DNA methylation pattern is important to ensure the correct and consistent function of each cell type. But this is no easy feat: the DNA methylation pattern can change over time, and this is linked to a variety of diseases. One is a rare genetic condition called immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, whose symptoms include recurrent respiratory infections, facial anomalies, and slowed growth and cognition. While it has been known that mutations in the CDCA7 gene cause ICF syndrome, little was known about the gene’s molecular function. Now Rockefeller University’s Funabiki lab, in close collaboration with researchers at the University of Tokyo and Yokohama City University, has identified a unique functional feature of CDCA7 that ensures the accurate inheritance of DNA methylation. The researchers discovered that CDCA7 senses hemimethylation in eukaryotes—an important find, because hemimethylation sensing has long been thought to be solely carried out by a protein called UHRF1. They published their results in Science Advances. “It’s quite an incredible finding,” says co-first author Isabel Wassing, a postdoc in the Laboratory of Chromosome and Cell Biology, headed by Hiro Funabiki. “Learning that CDCA7 also acts as a sensor explains why its mutation leads to diseases like ICF syndrome and fills in a major gap in the field of epigenetics. But it also introduced new questions. Why, for example, does the cell need two different hemimethylation sensors?” A transitional state Massive cycles of cell division, in which a parental cell is split into two identical daughter cells, give rise to the trillions of cells that make up the human body. Careful replication and segregation of the DNA molecule, packaged into chromosomes, allows for the accurate inheritance of genetic instructions to each new daughter cell. DNA replication is a tricky process. At the heart of a cell nucleus is chromatin, a complex of macromolecules composed of double-stranded DNA and histone proteins, which DNA wraps around like a string on a yo-yo to form nucleosomes. During replication, the double-stranded DNA strand unwinds from around the histone and splits into two single strands; DNA polymerases then stitch complementary nucleotides across each strand, resulting in two copies of the double-stranded DNA molecule. However, the methyl groups are not automatically copied onto the newly synthesized DNA strand, rendering it temporarily hemimethylated: the old parental DNA strand is methylated, while the newly incorporated nucleotides in the daughter DNA strand are not, which signals that DNA methylation maintenance is required. Indeed, the detection of hemimethylation by UHRF1 is the crucial first step; the protein then recruits and activates the DNA methyltransferase DNMT1, which deposits the methyl mark on the newly synthesized DNA strand. The stakes are high, as the cell’s ability to sense the presence of hemimethylation has a strict deadline: If the hemimethylated state of DNA is not recognized before the next round of replication, the epigenetic methylation mark is permanently lost. The chromatin problem Scientists know that the access of many enzymes and DNA-binding proteins is restricted by chromatin, including those that are necessary to introduce methylation to the DNA. Earlier research by the Funabiki lab showed that CDCA7 forms a complex with the protein encoded by the HELLS gene, whose mutations also cause ICF syndrome. HELLS is a so-called nucleosome remodeler, which can temporarily unwrap the DNA molecule from the nucleosome. “We envisioned that the CDCA7-HELLS complex is important to help the cell overcome the barrier of compacted heterochromatin and make the DNA molecule accessible to the deposition of methylation,” explains Funabiki. “But there are many different nucleosome remodelers that are able to expose the DNA molecule in this way. It remained a mystery to us why CDCA7-HELLS is the only nucleosome remodeling complex directly associated with DNA methylation maintenance. Now that we’ve shown that CDCA7 specifically recruits HELLS to hemimethylated DNA, this finally provides an explanation.” In this new model, CDCA7 recognizes the hemimethylated DNA in chromatin and recruits HELLS to the site, which, as a nucleosome remodeler, slides the nucleosome out of the way, revealing the hemimethylation site to UHRF1. The handover of hemimethylation sensing indicates that CDCA7 is better at detecting hemimethylation within the dense heterochromatin than UHRF1 is. It also explains the cell’s need for two different sensors. “For these sensors to detect hemimethylation, they must directly and selectively bind the hemimethylated DNA substrate,” Wassing says. “CDCA7 seems uniquely able to do that while the DNA is wrapped around the nucleosome. Without it, UHRF1 would be blind to the hemimethylation signal within the nucleosome particles.” This new understanding may help illuminate the underlying mechanisms of diseases born from dysfunctional methylation. In the future, they’ll seek out functions for hemimethylation sensors beyond DNA methylation maintenance. “Since some chromosomal regions are known to preserve hemimethylation status, their recognition by CDCA7 may have much broader roles in gene regulation and chromosome organization,” Funabiki says. “It’s an exciting possibility.” Reference: “CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes” by Isabel E. Wassing, Atsuya Nishiyama, Reia Shikimachi, Qingyuan Jia, Amika Kikuchi, Moeri Hiruta, Keita Sugimura, Xin Hong, Yoshie Chiba, Junhui Peng, Christopher Jenness, Makoto Nakanishi, Li Zhao, Kyohei Arita and Hironori Funabiki, 23 August 2024, Science Advances. DOI: 10.1126/sciadv.adp5753
DVDV1551RTWW78V
Arch support insole OEM from Taiwan 》a manufacturing partner you can rely on for quality and deliveryThailand graphene material ODM solution 》manufacturing with a focus on sustainability and comfortTaiwan foot care insole ODM expert 》offering full-service support from design to delivery